Dynamic chemotherapy-induced upregulation of CXCR4 expression: a mechanism of therapeutic resistance in pediatric AML.

نویسندگان

  • Edward Allan R Sison
  • Emily McIntyre
  • Daniel Magoon
  • Patrick Brown
چکیده

UNLABELLED Cure rates in pediatric acute leukemias remain suboptimal. Overexpression of the cell-surface chemokine receptor CXCR4 is associated with poor outcome in acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). Certain nonchemotherapeutic agents have been shown to modulate CXCR4 expression and alter leukemia interactions with stromal cells in the bone marrow microenvironment. Because chemotherapy is the mainstay of AML treatment, it was hypothesized that standard cytotoxic chemotherapeutic agents induce dynamic changes in leukemia surface CXCR4 expression, and that chemotherapy-induced upregulation of CXCR4 represents a mechanism of acquired therapeutic resistance. Here, it was shown that cell lines variably upregulate CXCR4 with chemotherapy treatment. Those that showed upregulation were differentially protected from chemotherapy-induced apoptosis when cocultured with stroma. The functional effects of chemotherapy-induced CXCR4 upregulation in an AML cell line (MOLM-14, which harbors consistent upregulated CXCR4) and clinical specimens were explored. Importantly, enhanced stromal-cell derived factor-1α (SDF1A/CXCL12)-mediated chemotaxis and stromal protection from additional chemotherapy-induced apoptosis was found. Furthermore, treatment with plerixafor, a CXCR4 inhibitor, preferentially decreased stromal protection with higher chemotherapy-induced upregulation of surface CXCR4. Thus, increased chemokine receptor CXCR4 expression after treatment with conventional chemotherapy may represent a mechanism of therapeutic resistance in pediatric AML. IMPLICATIONS CXCR4 may be a biomarker for the stratification and optimal treatment of patients using CXCR4 inhibitors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prognostic Value of BAALC Expression in Pediatric Acute Myeloid Leukemia: A Systematic Review

Background: Acute myeloid leukemia (AML) is a malignant disorder involving blood cells, characterized by obstructed or distorted differentiation of hematopoietic stem cells. In cytogenetically normal AML (CN AML), molecular abnormalities in NPM, FLT3, CEBPA, and BAALC genes are observed. Initially, high BAALC (Brain and Acute Leukemia Cytoplasmic gene) expression was introduced in a study on AM...

متن کامل

Plerixafor as a chemosensitizing agent in pediatric acute lymphoblastic leukemia: efficacy and potential mechanisms of resistance to CXCR4 inhibition

In spite of advances in the treatment of pediatric acute lymphoblastic leukemia (ALL), a significant number of children with ALL are not cured of their disease. We and others have shown that signaling from the bone marrow microenvironment confers therapeutic resistance, and that the interaction between CXCR4 and stromal cell-derived factor-1 (SDF-1 or CXCL12) is a key mediator of this effect. W...

متن کامل

Expression Profiling of Microarray Gene Signatures in Acute and Chronic Myeloid Leukaemia in Human Bone Marrow

Background Classification of cancer subtypes by means of microarray signatures is becoming increasingly difficult to ignore as a potential to transform pathological diagnosis nonetheless, measurement of Indicator genes in routine practice appears to be arduous. In a preceding published study, we utilized real-time PCR measurement of Indicator genes in acute lymphoid leukaemia (ALL) and acute m...

متن کامل

Role of CXCR4 in the Pathogenesis of Acute Myeloid Leukemia

The Chemokine receptor CXCR4 and its ligand stromal derived factor-1 (SDF-1/CXCL12) are important players involved in cross-talk between leukemia cells and the bone marrow (BM) microenvironment. CXCR4 expression is associated with poor prognosis in AML patients with and without the mutated FLT3 gene.CXCL12 which is constrictively secreted from the BM stroma and AML cells is critical for the sur...

متن کامل

Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML.

SDF-1alpha/CXCR4 signaling plays a key role in leukemia/bone marrow microenvironment interactions. We previously reported that bone marrow-derived stromal cells inhibit chemotherapy-induced apoptosis in acute myeloid leukemia (AML). Here we demonstrate that the CXCR4 inhibitor AMD3465 antagonized stromal-derived factor 1alpha (SDF-1alpha)-induced and stroma-induced chemotaxis and inhibited SDF-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cancer research : MCR

دوره 11 9  شماره 

صفحات  -

تاریخ انتشار 2013